San Difgo State UnIVERSITY

Stability and Control

AE460 Aircraft Design

Greg Marien
Lecturer

> Reading:
> Nicolai - CH 21, 22 \& 23
> Roskam - VI, CH 8 \& 10

Other references:
MIL-STD-1797/MIL-F-8785 Flying Qualities of Piloted Aircraft Airplane Flight Dynamics Part I (Roskam)

What are the requirements?

San Diego State
UNIVERSITY

Evaluate your aircraft for meeting the stability requirements See SRD (Problem Statement) for values

- Flight Condition given:
- Airspeed: $\mathrm{M}=$?
- Altitude:? ft.
- Standard atmosphere
- Configuration: ?
- Fuel: ?\%
- Longitudinal Stability:
- $\mathrm{Cm}_{\mathrm{CGa}}<0$ at trim condition
- Short period damping ratio: ?
- Phugoid damping ratio: ?
- Directional Stability:
- Dutch roll damping ratio: ?
- Dutch roll undamped natural frequency: ?
- Roll-mode time constant: ?
- Spiral time to double amplitude: ?

Derivatives

- For General Equations of Unsteady Motions, reference Etkin, Chapter 4
- Assumptions
- Aircraft configuration finalized
- All mass properties are known, including MOI
- Non-Dimensional Derivatives completed for flight condition analyzed
- Aircraft is a rigid body
- Symmetric aircraft across BL0, therefore $I_{x y}=I_{y z}=0$
- Axis of spinning rotors are fixed in the direction of the body axis and have constant angular speed
- Assume a small disturbance
- Results in the simplified Linear Equations of Motion... on following slides
- But first: Convert non-dimensional derivatives to dimensional derivatives
- Etkin, Tables 4.4 and 4.5 (also reference Table 4.1)
- Takes flight path angle, reference areas/lengths, airspeed and altitude into account

Longitudinal Equation (Etkin Eq. 4.9,18)

Eigenvalue/Eigenvector Review

$$
\dot{X}=A x+\Delta f_{c}
$$

Solutions of the above first order differential equations are in the following form:

Eigenvector

$$
x(t)=x_{0} e^{-\lambda t}
$$

Eigenvalue

$$
\begin{gathered}
\lambda x_{0}=\mathrm{A} x_{0} \\
(A-\lambda I) x_{0}=0 \\
\operatorname{det}(A-\lambda I)=0
\end{gathered}
$$

Expansion of the above results in the Nth degree characteristic equations
Longitudinal Stability

MATLAB example (values from Etkin, 6.2,1)

Hint: Type command "format long" to obtain more decimal places UNIVERSITY

MATLAB example (values from Etkin, 6.2,1)

Note: Characteristic Equation Roots contain real and imaginary roots
A negative real root means it is a stable mode

$$
\lambda=n \pm \omega i
$$

Quantitative Analysis

- Period, $T=\frac{2 \pi}{\omega}$
- Time to double ($\mathrm{t}_{\text {double }}$) or time to half $\left(\mathrm{t}_{\text {nalf }}\right)$

$$
t_{\text {double }} \text { or } t_{\text {half }}=\frac{\ln (2)}{|\zeta| \omega_{n}}
$$

- Cycles to double ($\mathrm{N}_{\text {double }}$) or cycles to half $\left(\mathrm{N}_{\text {haff }}\right) \quad N_{\text {double }}$ or $N_{\text {half }}=.110 \frac{\sqrt{1-\zeta^{2}}}{|\zeta|}$

$$
\lambda=n \pm \omega i
$$

Mode 2 (short period mode) $\quad \lambda_{3,4}=-.3719 \pm .8875 i$
Mode 1 (Phugoid mode) $\quad \lambda_{1,2}=-.003289 \pm .06723 i$

$$
\begin{gathered}
\omega_{n}=\sqrt{\omega^{2}+n^{2}}, \text { undamped circular frequency } \\
\quad \zeta=\frac{-n}{\omega_{n}}, \text { damping ratio }
\end{gathered}
$$

Lateral Equation (Etkin Eq. 4.9,19), continued

$$
\begin{aligned}
I_{x}^{\prime} & =\left(\frac{I_{x} I_{z}-I_{z x}^{2}}{I_{z}}\right) \\
\text { Where: } \quad & \quad I_{z}^{\prime}
\end{aligned}=\left(\frac{I_{x} I_{z}-I_{z x}^{2}}{I_{x}}\right)
$$

MATLAB example (values from Etkin, 6.7,1)

Hint: Type command "format long" to obtain more decimal places

MATLAB example (values from Etkin, 6.2,1)

Mode 3 (lateral oscillation or Dutch Roll) $\quad \lambda_{3,4}=-.0330 \pm .9465 i$

Note: Characteristic Equation Roots contain real and imaginary roots A negative real root means it is a stable mode

$$
\lambda=n \pm \omega i
$$

Results
San Diego State
UNIVERSITY

Etkin Table 4.2			
	Cx	Cz	Cm
u_hat	Cx_{u}	Cz_{u}	Cm_{u}
α	Cx_{α}	Cz_{α}	Cm_{α}
q_hat	Cx_{q}	Cz_{q}	Cm_{q}
a_dot_hat	C $\mathrm{x}_{\text {adot }}$	$\mathrm{Cz}_{\text {adot }}$	$\mathrm{Cm}_{\text {adot }}$

	Cx	Cz	Cm
u_hat	-0.108	-0.106	0.1043
α	0.2193	-4.92	-1.023
q_hat	0	-5.921	-23.92
Q_dot_hat	0	5.896	-6.314

Etkin Table 4.4			
	\mathbf{X}	\mathbf{Z}	\mathbf{M}
\mathbf{u}	X_{u}	Z_{u}	M_{u}
\mathbf{w}	X_{w}	Z_{w}	M_{w}
\mathbf{q}	X_{q}	Z_{q}	M_{q}
\mathbf{w} _dot	$\mathrm{X}_{\mathrm{w} _ \text {dot }}$	$\mathrm{Z}_{\mathrm{w} _ \text {dot }}$	$M_{\mathrm{w} _ \text {dot }}$

	\mathbf{X}	\mathbf{Z}	\mathbf{M}
\mathbf{u}	$-1.346 \mathrm{E}+02$	$-1.776 \mathrm{E}+03$	$3.551 \mathrm{E}+03$
\mathbf{w}	$2.734 \mathrm{E}+02$	$-6.133 \mathrm{E}+03$	$-3.483 \mathrm{E}+04$
\mathbf{q}	$0.000 \mathrm{E}+00$	$-1.008 \mathrm{E}+05$	$-1.112 \mathrm{E}+07$
$\mathbf{w} _$dot	$0.000 \mathrm{E}+00$	$1.296 \mathrm{E}+02$	$-3.791 \mathrm{E}+03$

Etkin Table 4.3			
	Cy	Cl	Cn
β	$С^{\text {¢ }}{ }_{\beta}$	Cl_{β}	Cn_{β}
p_hat	Cyp_{p}	Cl_{p}	Cn_{p}
r_hat	Cy r	Cl_{r}	Cn_{r}
ß_dot_hat	$\mathrm{Cy}_{\text {Bdot }}$	$\mathrm{Cl}_{\text {pdot }}$	$\mathrm{Cn}_{\text {pdot }}$
	Cy	CI	Cn
β	-0.8771	-0.2797	0.1946
p_hat	0	-0.3295	-0.04073
r_hat	0	0.304	-0.2737
ß_dot_hat	0	0	0
Etkin Table 4.5			
	Y	L	N
v	Y_{V}	L_{v}	N_{v}
p	Y_{p}	L_{p}	N_{p}
r	Y_{r}	Lr_{r}	N_{r}
	Y	L	N
v	-1.093E+03	$-6.824 \mathrm{E}+04$	4.747E+04
p	0.000E+00	$-7.866 \mathrm{E}+06$	-9.723E+05
r	$0.000 \mathrm{E}+00$	$7.257 \mathrm{E}+06$	-6.534E+06

Side Bar: Routh's Criteria for Stability

Use to check for instability

Start with the characteristic equation

$$
A \lambda^{4}+B \lambda^{3}+C \lambda^{2}+D \lambda+E=0(A>0)
$$

Routh's discriminant

$E=0$ and $R=0$ are the boundaries between stability and instability
Assume a stable aircraft, and you change a design parameter resulting in an instability, then the following conditions hold:

- If only E changes from + to -, then one real root changes from - to +, that is, one divergence appears in the solution.
- If only R changes from + to -, then one real part of one complex pair of roots changes from - to + , that is, one divergent oscillation appears in the solution.

Stability Results

San Diego State
UNIVERSITY

Moments of Inertia CGref	
Ixx	$1.83 \mathrm{E}+07$ slugs-ft ${ }^{2}$
Iyy	$3.31 \mathrm{E}+07$ slugs-ft ${ }^{2}$
Izz	$4.97 \mathrm{E}+07$ slugs-ft ${ }^{2}$
Izx	$-1.56 \mathrm{E}+06$ slugs-ft ${ }^{2}$
Ixx'	$1.83 \mathrm{E}+07$ slugs-ft ${ }^{2}$
Izz'	$4.96 \mathrm{E}+07$ slugs-ft ${ }^{2}$
Izx'	-1.72E-09 slugs-ft ${ }^{2}$

A (Longitudinal Equations, Etkin 4.9,18)			
$-6.8040 \mathrm{E}-03$	$1.3816 \mathrm{E}-02$	$0.0000 \mathrm{E}+00$	-32.174
-0.0904	-0.3120	774.3	0
$1.1512 \mathrm{E}-04$	$-1.0165 \mathrm{E}-03$	$-4.2462 \mathrm{E}-01$	0
0	0	1	0

B (Lateral Equations, Etkin 4.9,19)			
$-5.526 \mathrm{E}-02$	$0.000 \mathrm{E}+00$	$-7.743 \mathrm{E}+02$	32.174
$-3.820 \mathrm{E}-03$	$-4.293 \mathrm{E}-01$	$4.089 \mathrm{E}-01$	0
$1.075 \mathrm{E}-03$	$-6.088 \mathrm{E}-03$	$-1.443 \mathrm{E}-01$	0
0	1	0	0

\mathbf{R}	$\mathbf{0 . 0 0 4 1 9}$
$\mathrm{E}>0$?	STABLE
$\mathrm{R}>0$?	STABLE

\mathbf{R}	$\mathbf{0 . 0 4 2 2}$
$\mathrm{E}>0$?	STABLE
$\mathrm{R}>0$?	STABLE

Stability Results

- Cells in BLUE are the requirements to meet in the SRD (Problem Statement)

Lateral	1 (Spiral)	1	-0.0072973		STABLE	0.0073	1.00000	n/a	95.0	n/a	
	2 (Rolling Convergence)	2	-0.56248		STABLE	0.5625	1.00000	n/a	1.2	n/a	. 8
	3 (Lateral Oscillation/Dutch Roll)	3,4	-0.033011	0.94655	STABLE	0.9471	0.03485	6.6	21.0	3.15	

Note: $\tau_{\mathrm{R}}($ time constant $)=-1 / \lambda_{2}$

San Diego State UNIVERSITY

Roll Control

(Aileron Sizing)

Roll Power

- For JT, use Class IVA per MIL-HDBK-1797
- 90° in 1.3 s
- For CAS, use Class IVC per MIL-HDBK-1797
- 90° in 1.7 s
- For SSBJ use 14CFR25 requirements

San Diego State UNIVERSITY

Pitch Control

(Elevator/Stabilator Sizing)

Pitch Sizing

Fall Semester we used similar tail volume coefficients to size the horizontal stabilizer, but more analysis is required to ensure pitch control is sufficient and it is optimized for trim drag.

- Trim drag of horizontal stab should be $<10 \%$ of overall aircraft drag ($<5 \%$ for SSBJ)
- Only evaluate the drag due to lift (Cdo already accounted for)
- Too much Trim Drag?
- Move CG aft closer to neutral point
- Increase tail volume coefficient by increate tail area or moving aft
- Ancillary benefit: both help to move CG aft
- Increase tail aspect ratio to increase $\mathrm{C}_{\mathrm{L} \alpha \mathrm{T}}$

Nicolai References (Student Exercises)

- Trim Flight
- Sections 22.2, 22.3 or 22.4

Side Bar: Wing incidence?

- Maneuver Flight
- Pull up Maneuver: Sections 22.5, 22.6 or 22.7
- Level Turn: Section 22.8
- Assumption: Assume +/- 20 degrees max deflection, but can go higher, up to 30 degrees with diminishing returns

Include in report, sizing for:

- Trim Flight sizing
- $\quad 7.5 \mathrm{~g}$ pull up (structural load factor)
- $\quad 5 \mathrm{~g}$ sustained turn
- Takeoff Rotation (rotate about MLG, see Nicolai Fig 23.3)
- Stretch goal: High AoA at low speed, i.e. landing (note: Ground effect increases stability)

San Diego State UNIVERSITY

Yaw Control

(Rudder Sizing)

Fall Semester we used similar tail volume coefficients to size the vertical stabilizer, but more analysis is required to ensure yaw control is sufficient.

- Requirements:
- Crosswind landing
- OEI (this in the only one we are concerned about in 460B)
- Adverse yaw
- Roll right cause left sideslip, requiring rudder input to correct (coordinated turn)
- Methodology already presented for OEI

San Diego State UNIVERSITY

Control Axis

San Diego State UNIVERSITY

Figure 21.1 Major nondimensional aerodynamic parameters and sign convention. (Nicolai)

(a)

(b)

Figure 21.2 Static and dynamic stability about the pitch axis.

San Difgo State UNIVERSITY

