

SAN DIEGO STATE UNIVERSITY Loads and VSAERO

Greg Marien

Introduction

Reading:

- 1. Nicolai, CH 19
- 2. Niu, Airframe Structural Design Chapter 3
- 3. Bruhn, Analysis and Design of Flight Vehicle Structures, Chapter A5

4. NACA TN-921, THEORETICAL SYMMETRIC SPAN LOADING AT SUBSONIC SPEEDS FOR WINGS HAVING ARBITRARY PLAN FORM
5. NACA TN 2282, AN IMPROVED APPROXIMATE METHOD FOR CALCULATING LIFT DISTRIBUTION DUE TO TWIST

- Complete Wing Loads and plots net shears, bending moments, and torsion vs. wing span
 - Nicolai, CH 19 very old school, but gets a good answer
 - Bruhn Method similar to Nicolai
 - Nui Method more detailed
- Load Types
 - Basic Aero Loading
 - Loading at C_L=0 (load due to wing twist)
 - Additional Aero Loading
 - Due to AoA
 - Section of the wing (2D) $C_{l\alpha}$
 - Used to obtain spanwise lift distribution
 - Engine/Prop Air Loads (if applicable)
 - Inertia Loading
 - · Wing has its own weight

a.c. and Basic Air Loading (From Nui)

Spanwise Additional Lift Distribution

5

Inertia Data

Fig. 3.11.16 Given wing inertia data.

6

- Great cookbook method for spar cap sizing
 - CH 19, example 19.2

Nui Method (use your aircraft design)

0	0	3	٢	\$	-	-	Additional Airload		
					C	Ø	(8)	9	0
n	η	$d\eta = \frac{\Delta \eta}{2}$	y (inches)	$\frac{\Delta y}{2}$	c (inches)	c Mid. strip (inches)	$\frac{C_{\ell a} C}{C_L C_{av}}$	$\frac{S_z}{C_L q \frac{S}{2}}$	S. Additional airload
		$\frac{\bigotimes_{n+1} - \bigotimes_n}{2}$	$\begin{bmatrix} \frac{b}{2} \\ 588 \times @ \end{bmatrix} [\eta]$	$\frac{\textcircled{@}_{n+1} - \textcircled{@}_n}{2}$	$C_R - (C_R - C_T) \eta$ $210 - 126 \times @$	$\frac{\frac{C_n + C_{n-1}}{2}}{\frac{\circledast_n + \circledast_{n+1}}{2}}$	From Fig. 3.11.11	$\int \frac{C_{ta} C}{C_L C_{av}} d\eta$ $\uparrow \int \textcircled{B} d\eta$	<u>L</u> _w ⊛ 115500 ©
2 3 4 5 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.1 \\ 0.2 \\ 0.3 \\ 0.4^{-} \\ 0.4^{+} \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.95 \\ 1.0 \end{array}$	$\begin{array}{c} 0.05\\ 0.05\\ 0.05\\ 0\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.025\\ 0.025\\ \end{array}$	58.8 117.6 176.4 235.2 294.0 352.8 411.6 470.4 529.2 558.6 588.0	29.4 29.4 0 29.4 29.4 29.4 29.4 29.4 29.4 29.4 14.7 14.7	197.4 184.8 172.2 159.6 159.6 147.0 134.4 121.8 109.2 96.6 90.3 84.0	191.1 178.5 165.9 159.6 153.3 140.7 128.1 115.5 102.9 93.45 87.15	1.325 1.28 1.223 1.155 1.155 1.072 0.98 0.877 0.738 0.552 0.392 0	0.86 0.73 0.604 0.485 0.374 0.272 0.179 0.0979 0.0334 0.0098 0	99330 84320 69760 56020 43200 31420 20670 11310 3860 1130 0

0	Basic Airload			0	Additional and Basic Loads				Inertia Loads			
	0	٢	0		0	0	0	0	9	0	0	۲
n	$\frac{C_{tb}C}{C_{sr}}$	$\frac{S_t}{q\frac{S}{2}}$	Sz Basic airload	S. additional	S_{i} \mathfrak{G}_{n} $-\mathfrak{G}_{n+1}$	$\frac{X_{\mathcal{M}}}{C}$	△X (0.40-�) ר	M _y additional	$\frac{S_{\epsilon}}{n_{\epsilon}}$	$\frac{M_y}{n_k}$	S⊾ Inertia −2.5 ©	M, Inertia −2.5 Ø
	Fig. 3.11.14	$\int \frac{C_{ta} C}{C_L C_{ex}} d\eta$ $t \int \odot d\eta$	$q\frac{S}{2}$ 334000 \otimes	load ©+©		From Fig. 3.11.13		load tΣ ® × ℗	F Fig. 3	rom 3.11.16		
2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{c} 0.025\\ 0.0205\\ 0.014\\ 0.006\\ -0.002\\ -0.1\\ -0.0175\\ -0.0235\\ -0.024\\ -0.021\\ 0\\ \end{array}$	-0.00325 -0.00553 -0.00626 -0.00726 -0.00786 -0.00806 -0.00746 -0.00608 -0.00403 -0.00163 -0.00053 0	-1086 -1847 -2091 -2425 -2625 -2692 -2492 -2031 -1346 - 544 - 177 0	98244 82473 67669 53595 53395 40508 28928 18639 9964 3316 953 0	15771 14804 14074 200 12887 11580 10289 8675 6648 2363 953	.261 .260 .257 .255 .248 .240 .225 .205 .182 .160 .145	26.5 25 23.7 23.2 23.3 22.5 22.5 22.5 22.5 22.5 22.5	2337639 1919707 1549607 1216053 1211413 911146 650596 419093 223905 74325 21157	21000 17100 15100 13500 7500 6000 4700 3400 2100 1000 500 0	.84 × 10 ⁴ .84 × 10 ⁶ .84 × 10 ⁶ .84 × 10 ⁶ 0 0 0 0 0 0 0 0 0 0 0 0 0	-52400 -42700 -37700 -33700 -18750 -15000 -11750 - 8480 - 5240 - 5240 - 2500 - 1250 0	-2.1 × 10 -2.1 × 10 -2.1 × 10 -2.1 × 10 0 0 0 0 0 0 0 0 0 0 0 0 0
irfra	Note:	$\frac{b}{2} = 49 \text{ ft or}$ $C_R = 17.5 \text{ ft}$ $C_R = 7.0 \text{ ft or}$ $C_R = C_T = 2$ $C_{ar} = \left(\frac{C_R}{C_{ar}}\right)$ tural Des	$\frac{588 \text{ in}}{\text{or } 210 \text{ in}}$ $\frac{\text{or } 210 \text{ in}}{\text{or } 84 \text{ in}}$ $\frac{10 - 84 = 1}{2}$ $\frac{+C_T}{2} = 1$ sign	26 in 47 in P:		A I <u>0.0</u> ana Wh Tabylat	Propellor loa 5(220000) = 1 assume the there $M_s = 550$ 1 ion of win	d (including 5500 lb/side above load i 00 × 200 = 1 g loads.	power pla s located : 10000 in-	nt weight), 200 in forwai Ib	rd of 0.40C	

0	0	0	8	Ø	8	0	0
S _z Propeller air load	M _y Propeller air load	$\frac{C_{mo} C}{C_{av}}$ From Fig. 3.11.15	$\frac{d M_y}{q \frac{S}{2}}$ $t \int \otimes \otimes d\eta$	$\begin{array}{c} M_y (10^6) \\ \text{due to } C_{mo} \\ 334000 \times \textcircled{B} \\ \text{(in-lb)} \end{array}$	$\begin{array}{c}S_z\\(net)\\\textcircled{(het)}{(b)}+\textcircled{(b)}{(b)}$	$M_x (10^6) $ (net) $\uparrow \int \otimes dy$ (in-lb)	$\begin{array}{c} M_{y} (10^{6}) \\ (net) \\ @ + @ \\ + @ + @ \\ (in-lb) \end{array}$
5500 5500 5500 5500 0 0 0 0 0 0 0 0 0 0	1100000 1100000 1100000 0 0 0 0 0 0 0 0	105 10 095 089 089 084 08 076 072 066 063 06	$\begin{array}{r} -10.847 \\ - 8.886 \\ - 7.144 \\ 0 \\ - 5.616 \\ - 4.288 \\ - 3.133 \\ - 2.132 \\ - 1.282 \\ - 0.57 \\ - 0.268 \end{array}$	$\begin{array}{r} -3.623 \\ -2.986 \\ -2.386 \\ 0 \\ -1.876 \\ -1.432 \\ -1.046 \\ -0.712 \\ -0.428 \\ -0.19 \\ -0.09 \end{array}$	51324 45273 35469 25395 34645 25508 17178 10159 4724 816 - 297 0	$11.434 \\ 8.594 \\ 6.219 \\ 4.43 \\ 4.43 \\ 2.662 \\ 1.407 \\ 0.604 \\ 0.166 \\ 0.0033 \\ -0.004 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	-2.286 -2.05 -1.836 -0.665 -0.521 -0.386 -0.293 -0.204 -0.116 -0.069

 $q\frac{S}{2}$

VSAERO examples – Eye Candy

Location of Center of Pressure along the Span

More Eye Candy

Report tasking

- Develop V-n diagrams
- Develop wing loads
- Size spar caps
- Develop design for wing/fuselage interface
 - Calculate and present loads you are reacting
 - Show load points/reaction loads

SAN DIEGO STATE UNIVERSITY

Backup

SAN DIEGO STATE UNIVERSITY